Hypersimplicity and semicomputability in the weak truth table degrees
نویسنده
چکیده
We study the classes of hypersimple and semicomputable sets as well as their intersection in the weak truth table degrees. We construct degrees that are not bounded by hypersimple degrees outside any non-trivial upper cone of Turing degrees and show that the hypersimple-free c.e. wtt degrees are downwards dense in the c.e. wtt degrees. Moreover, we consider the sets that are both hypersimple and semicomputable, characterize them as the (bi-infinite) c.e. cuts of computable orderings of N of order type ω+ω∗ and study their wtt degrees. We show that there are hypersimple degrees that are not bounded by any hypersimple semicomputable degree, investigate relationships with the join and look for maximal and minimal elements of related classes.
منابع مشابه
Schnorr trivial sets and truth-table reducibility
We give several characterizations of Schnorr trivial sets, including a new lowness notion for Schnorr triviality based on truth-table reducibility. These characterizations allow us to see not only that some natural classes of sets, including maximal sets, are composed entirely of Schnorr trivials, but also that the Schnorr trivial sets form an ideal in the truth-table degrees but not the weak t...
متن کاملΠ1 Classes and Strong Degree Spectra of Relations
We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear order. Countable Π1 subsets of 2 ω and Kolmogorov complexity play a major role in the proof.
متن کاملΠ10 classes and strong degree spectra of relations
We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear order. Countable Π1 subsets of 2 ω and Kolmogorov complexity play a major role in the proof.
متن کاملDecidability of the Two-Quantifier Theory of the Recursively Enumerable Weak Truth-Table Degrees and Other Distributive Upper Semi-Lattices
We give a decision procedure for the theory of the weak truth table wtt degrees of the recursively enumerable sets The key to this decision procedure is a characterization of the nite lattices which can be embedded into the r e wtt degrees by a map which preserves the least and greatest elements A nite lattice has such an embedding if and only if it is distributive and the ideal generated by it...
متن کاملConstructive Dimension and Weak Truth-Table Degrees
This paper examines the constructive Hausdorff and packing dimensions of weak truth-table degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truth-table equivalent to a sequence R with dimH(R) ≥ dimH(S)/dimP(S)− ǫ, for arbitrary ǫ > 0. Furthermore, if dimP(S) > 0, then dimP(R) ≥ 1− ǫ. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 44 شماره
صفحات -
تاریخ انتشار 2005